

FIT IoT-LAB tutorial Hands-on practice with a very large scale testbed tool for the Internet of Things

UbiMob 2014 – June 5-6, 2014 Sophia-Antipolis

Table of contents

- IoT in general
- FIT IoT-LAB presentation
- Tutorial
- Future Work

An IoT future application

Innia

2020 : 30 à 50 billion communicating objects

Communicating Objects

		Sensors (S)
(cp)	Communication(C)	Processor (P)
	Energy	Actuators(A)

Physical World « Environment »

IoT Architecture

http://www.freescale.com/files/32bit/doc/white_paper/INTOTHNGSWP.pdf

Table of Contents

- IoT in general
- FIT IoT-LAB presentation
- Tutorial
- Future Work

Ambition: create a first-class facility to promote experimentally driven research and to facilitate the emergence of the Internet of the future.

Goal: meet the advanced user requirements (multiple environments, integration tests, reproducibility, ...).

Distributed facility, heterogeneous devices, complementary components, adequate/relevant locations.

9 sites: Paris (2), Evry, Rocquencourt, Lille, Strasbourg, Lyon, Grenoble, Sophia Antipolis.

4 parts (composed of 10 elements): Network Operations Center, Cognitive Radio Tesbed, IoT-LAB Testbed, Wireless OneLab Testbed

Grand Emprunt funding: 5 M€ Investment (3 years) + 0.8 M€ Operation (6 years 10 months).

Present users (SensLAB)

- 263 user account (11 companies et 25 country) for the previous version SENSLAB
- Academic
 - networking / robotic / Ambiant network

Industrial

- Thales, Orange Lab, Atos
- SmartGrains (spinoff), Noolitic (spinoff), HikoB (spinoff)
- Etineo (SME), Watteco, EasiFab, Alpwise

• I'EQUIPEX FIT target platform for ANR INFRA call

Innía

FIT IoT-LAB objectives

Use Cases :

- Home gateway
- Monitoring via cloud services
- IPV6 from the sensor to the cloud

IoT-LAB node

- What is a IoT-LAB node
 - OPEN, *i.e.*, no « a-priori » knowledge on the embedded user software
 - Efficient canal of monitoring (wired)
 - Open node dedicated to the user
 - Control node
 - An IoT-LAB "Gateway"

IoT-LAB Node M3 Architecture

Gateway

Open Node M3

IoT-LAB nodes

A8 node : TI-SITARA AM3505 Ethernet, USB Linux/Android • M3 node (Radio Atmel AT86RF231) M3 node : STM32 Radio Atmel AT86RF231 Ambiant light, Temp. Pressure, IMU ٠ ormanc WSN430 node : TI MSP430 Radio TI CC1101 / CC2420 Ambiant light, Temp.

IoT-LAB Grenoble Site

- · 256 WSN nodes
- · 200/384 M3 nodes
- 256 A8 nodes
- · 32 Open nodes

14

Embedded User Software

Several Operating Systems

	Wsn430 Node	M3 Node	A8 Node
FreeRTOS	x	x	-
Contiki	x	x	-
Riot	x	x	-
TinyOS	x	-	-
OpenWSN	x	x	-
Linux	-	-	x

Table of Contents

- IoT in general
- FIT IoT-LAB presentation
- Tutorial
- Future Work

How to use the platform ?

- Open a user account
- Ressources reservation
 - Geographical sites
 - WSN430/M3/A8 nodes
- Experimentation description
 - Firmware/nodes association
 - Monitoring tuning
- Experimentation launching
- Monitoring data analysis

Innía

Tutorial

- 0. Accounts, SSH keys, Development Environments
- 1. First Experiment
 - Create a New Experiment with the Web Portal

- 2. Monitoring Devices
 - Monitor Consumption on a M3 Node During Experiment

- 3. Contiki's ulPv6 stack & Tools
- 4. Sensor Information Collection
- 5. Demo: The Big Red Button

User support

- Web Portal : www.iot-lab.info/
- Git-Hub
 - Wiki : https://github.com/iot-lab/iot-lab/wiki
 - **Sources :** https://github.com/iot-lab/
 - **Issues :** https://github.com/iot-lab/iot-lab/issues
- Mailing-list : users@iot-lab.info

Table of Contents

- IoT in general
- FIT IoT-LAB presentation
- Tutorial
- Future Work

Road Map 2014

Мау	M3 nodes partial deployement on Grenoble site
June	M3 nodes partial deployement on Strasbourg site
July	A8 nodes partial deployement on Paris site
	M3 nodes partial deployement on Lille site
September	Sniffer (802.15.4 packets capture)
	Robot mobile node on Lille, Grenoble and Strasbourg site
November	National Workshop for IoT-LAB inauguration
	Noise injection, GPS clock synchronisation
December	A8 and M3 nodes total deployement on all sites

2015

Mobile nodes on all sites, more fonctionnalities,

